
To
S. Byland
Physikinstitut
MNG Rämibühl
8001 Zürich

Maturitätsarbeit

ARCHITECTING
RICH INTERNET APPLICATIONS

Daniel Gąsienica
March 2, 2005

Abstract

Today, RICH INTERNET APPLICATIONS (RIA) are the tip of the evolution of
web deployed applications. They are the next step in the process of over-
coming the boundaries posed by the web as we know it. RIA make use of
a rich client, which enables developers to create more responsive, intuitive,
and accessible user interfaces than ever before.

In the first part of this paper the fundamentals of RICH INTERNET AP-
PLICATIONS are described: their architecture, underlying technologies, and
programming techniques used in their development. In the second part,
the process and experiences of building PHYRE, a real world RIA, are por-
trayed. PHYRE’s task is to give to the physics department of the MNG
Rämibühl access to its catalog of experiments, which can be carried out at
the school. PHYRE is based upon the Macromedia Flash Player acting as
rich client and otherwise makes use of free and open source technologies.
Relevant issues from all parts of the development of a RICH INTERNET AP-
PLICATION are discussed, such as database modeling, dealing with hier-
archical data, user authentication & access control, and applying design
patterns in RICH INTERNET APPLICATIONS, just to name a few. As the title
suggests, one of the main topics of this paper is the architecture of RICH

INTERNET APPLICATIONS which is discussed using PHYRE as an example.
Additionally, the complete source of PHYRE, the RICH INTERNET AP-

PLICATION discussed in this paper, is made available to the reader.

Contents

1 Introduction 4
1.1 Who Should (and Shouldn’t) Read This Paper 4
1.2 The Evolution of Web Applications 5
1.3 What Is a RICH INTERNET APPLICATION? 5
1.4 Finding the Right Task for an RIA 6

I Part One: Theoretical Background 7

2 PHYRE: Physics Rämibühl Experiments 7
2.1 Features . 7
2.2 Specifications . 7

2.2.1 Functional Requirements 8
2.2.2 Business Rules . 8
2.2.3 Technical Requirements 9
2.2.4 User Requirements . 10

3 Technologies 11
3.1 Introduction . 11
3.2 Macromedia Flash . 11
3.3 AMFPHP . 11
3.4 MySQL . 13

4 Programming Techniques 14
4.1 Introduction . 14
4.2 OOP: Object–Oriented Programming 14
4.3 Design Patterns . 15
4.4 Refactoring . 15

5 Three–Tiered Application Architecture 16
5.1 Introduction . 16
5.2 Data Tier . 16
5.3 Business Tier . 16
5.4 Presentation Tier . 17
5.5 Benefits . 17

1

II Part Two: Building PHYRE 18

6 PHYRE’s Catalog Database 18
6.1 The Entity-Relationship Model 18
6.2 Relationships & Business Rules 19

7 Hierarchical Data & Recursion 24

8 User Authentication & Access Control 28
8.1 Introduction . 28
8.2 Sensitive Data & MD5 . 28
8.3 Implementation . 30

8.3.1 Prerequisites . 30
8.3.2 Login . 31
8.3.3 Logout . 37

8.4 Conclusions . 37
8.5 Code Listings . 38

9 Design Patterns in PHYRE 40
9.1 Singleton . 40
9.2 Proxy . 41
9.3 Further Patterns Found in PHYRE 43

10 UI Design: PHYRE’s Single-Screen Interface 44

11 Closing Thoughts 48

12 Acknowledgements 50

A Additional Resources 51

B Tools 52

C Source Code 52

References 53

2

Foreword

Since I was little I have carried around the passion to create. When I was
a young boy this appeared in the sheer endless number of LEGO models I
built. In my adolescence I ran across the fascinating world of computers. I
made my first steps as a mere consumer playing video games and surfing
the internet, although I soon began to ask myself where all those web sites
I browsed came from. At that time, I was lucky to have a new classmate
who already had experience in designing web sites and who actually built
and maintained a Dragonball1 fan web site. I asked him to lend me an in-
troductory book on the topic. The next day already, I came home with a
beginner’s book on HTML, turned on my computer, opened Notepad2 and
started to write my first markup. Those early experiences were responsible
that I kept on learning and did not stop until this very day. Looking back,
the results from then would now probably make me close my eyes as well
as my web browser. Feeling limited and often annoyed by the compara-
tively little possibilities that plain HTML offered, one day I came across
a tool called Flash. Flash promised to overcome many of the boundaries
posed by conventional web design. Between 2000, the year I started to ex-
periment with Flash 4, and now, a lot changed: the tool comes in its seventh
version called Flash MX 2004 and my experience has grown constantly with
the release of new versions.

As the time arose to find a suitable topic to write my Maturitätsarbeit
about, it was somehow obvious that I should choose a topic that had to do
with building web sites. But as it turned out I was not interested in dis-
cussing something I wasn’t able to investigate and elaborate any further
than I already did. As disturbing as this situation was, I allowed myself to
virtually consider a completely different topic. After a lengthy conversa-
tion with my brother, I got back on track and knew that I had to find a topic
related to building web sites, even so, one that would give me the chance to
expand my knowledge. Having read many articles about it, the term RICH

INTERNET APPLICATIONS (RIA) suddenly came to my mind. The topic of-
fered so many aspects to delve into as well as the opportunity to actually
plan, build, and deploy an RIA. This very opportunity was eventually the
determining factor for my choice. I am not only excited to have found a
topic to which I could apply the skills I have collected over the years but
also to face new challenges and, most importantly, gather a lot of practical
experience. Today, the challenge of building RICH INTERNET APPLICA-
TIONS is not much different for me than the one of building models with
LEGO when I was little — just the tools, approaches, and results are others.

— Daniel Gąsienica

1Japanese comic book
2basic text editor which ships with Microsoft Windows

3

1 Introduction

1.1 Who Should (and Shouldn’t) Read This Paper

If you can answer any of the following statements with yes, you should
definitely consider reading this paper.

• You are interested in knowing how certain things really work.

• You want to see in what direction the WWW is going.

• You want to find out more about the underlying architecture of web
applications.

• You are building conventional web applications and want to find out
about the advantages of RICH INTERNET APPLICATIONS.

• You are developing for the client-side and want to see how the server-
side works.

• You are good at writing server-side applications and want to know
what possibilities there are to create rich user interfaces to those ap-
plications.

• You already know what a RICH INTERNET APPLICATION is and want
to analyze the complete source of a real world RIA.

On the other hand, do not read this paper if you are looking for a step
by step tutorial on how to build a RICH INTERNET APPLICATION or if you
expect this paper to be a beginner’s guide to programming.

I hope you will enjoy reading this paper as much as I did writing it!

Important Note: In order to fully understand the contents of this paper it is
helpful to have experience working with Macromedia Flash and Flash Remoting.
Comprehension of the code examples and the source code requires advanced skills
in different programming languages such as ActionScript 2.0 and PHP as well
as a certain understanding of relational database management systems (RDBMS)
and the structured query language (SQL).

4

1.2 The Evolution of Web Applications

The World Wide Web’s inventor, Sir Tim Berners-Lee, once mentioned that
”the original idea of the web was that it should be a collaborative space where you
can communicate through sharing information.” [1]. At that time, in the early
1990s, hardly anyone had anticipated what followed. The use of the WWW
in its early days had another background than today. The purpose of the
early WWW was to display plain information with references to other web
pages, called hyperlinks. The revolutionary idea behind the WWW was that
anyone could publish his findings at no charge and make them available
to everyone. As soon as personal computers with an internet connection
were available to many households across the world, nothing was able to
stop the rapid progression of the information age. When businesses started
to recognize the potential of the web deployment model, they began to use
HTML not just for their web sites but also to create interfaces to their ap-
plications. Most web applications did not offer the same usability and user
experience as their desktop counterparts because not only did HTML pro-
vide a limited set of user interface controls, but it also lacked a client-side
data model. During the past years the technologies needed to use the web
as a deployment platform for applications matured and were standardized.
However while the back-end took part in the evolution, the presentation
layer did not. Traditional web applications are still written in HTML 4.0, a
standard adopted in 1998, and in no way designed for the purpose of pro-
viding sophisticated, responsive and intuitive user interfaces. The growing
web application niche is where Macromedia, a company developing soft-
ware for the creation of digital content, claims a share with its solutions for
RICH INTERNET APPLICATIONS.

1.3 What Is a RICH INTERNET APPLICATION?

Macromedia Flash MX, a digital content authoring tool, and at the same
time Flash Player 6, its client-side plug-in, were released in early 2002 and
promised to provide a platform for a new generation of web applications
called RICH INTERNET APPLICATIONS. The term RICH INTERNET APPLI-
CATIONS (RIA) was introduced by Jeremy Allaire, the founder of Allaire
Inc., a web company that later merged with Macromedia, and is discussed
in detail in the whitepaper Macromedia Flash MX: A Next-Generation Rich
Client [2].

Recapitulatory, it states that ”RICH INTERNET APPLICATIONS combine
the functionality of desktop software applications with the broad reach and low-
cost deployment of web applications – resulting in significantly more intuitive,
responsive, and effective user experiences.” [3].

Good examples of RIA are scarce (another reason for me to build one)
but the number is growing steadily. RIA are found where the kind of in-

5

teraction is needed which conventional web applications cannot offer. A
superb example for an RIA is the ”car configurator” application designed
for the US web site of the car manufacturer MINI [4]. RICH INTERNET

APPLICATIONS not always have to be as complex as the latter: E*TRADE
developed a light-weight RIA that enables users of their web site to look
into stock information without the need of time-consuming page refreshes
which also generate large traffic for the server, and thus additional avoid-
able cost [5]. The E*TRADE RIA is also a good example for the fact that
RIA do not have to be stand-alone applications which take up the entire
screen but can also be incorporated into any static web site to perform only
certain, adequate tasks.

Even though this paper discusses solely RICH INTERNET APPLICATIONS

that are based upon the Flash Player3 acting as rich client, it is worth men-
tioning that there are other, competing technologies available or in work.
The future will definitely bring forward more RIA, or similar application
deployment models, most prominently Microsoft with their next version of
Windows, code-named Longhorn, which is expected in late 2006. Stay tuned!

1.4 Finding the Right Task for an RIA

The most important aspect to me when I learn something new, is to have ex-
amples that illustrate the issues and bear a reference to applications in the
real world. Primarily, the goal of my Maturitätsarbeit is to plan, build and
deploy a RICH INTERNET APPLICATION. This paper’s purpose is guide the
reader through that process and to illustrate, explain, and document some
of the challenges faced within it. To make it more interesting and challeng-
ing for me, I was looking for an idea for an RIA that would address a real
world problem. This will allow readers to apply the techniques and architec-
ture discussed in this paper to their own projects. Since I will disclose the
complete source of this project, readers get the chance not just to see one of
the many already available sample RIA, but an actual application that was
built to handle a real world task.

After talking to my tutor, Mr. Byland, we soon found a suitable task for
me. He introduced me to the experiments catalog of the Physics Institute
Rämibühl. Basically, it was a handful of binders with data sheets listing and
describing the experiments which the physics teachers can carry out at our
school. Even if the catalog served its purpose, we both saw that there was
plenty of room for improvement, so I accepted the challenge of turning it
into an RIA. PHYRE is the name I chose for the RIA. It is the acronym for
Physics Rämibühl Experiments and is to be pronounced like fire.

3At the date of publication, the current version is Flash Player 7

6

Part I

Theoretical Background

2 PHYRE: Physics Rämibühl Experiments

2.1 Features

Naturally, PHYRE has to perform all the tasks the original catalog does.
Nevertheless, there are many features I have in mind that will make the
catalog more accessible and flexible:

• As the name RICH INTERNET APPLICATION implies, PHYRE will run
online, this itself brings one dramatic advantage over the previous
catalog: ubiquitous availability from any internet enabled device.

• Data redundancy is avoided by using a single, centralized data source,
a database that holds all the information about the experiments.

• By assigning meta keywords to all the experiments the catalog will be
fully searchable. This will eliminate the problem of not finding certain
experiments because of the very specific names they have.

• The data sheet of each experiment in PHYRE will make all the ne-
cessary details available at a glance: each component needed for the
set-up, the settings, attached illustrations, photos and schematic dia-
grams.

• The RIA’s single-screen interface, which is discussed in section 10, makes
it easier for users to find what they need more quickly.

• User authentication allows me to incorporate an administration mode
into the very same application, so anyone who has logged in can edit,
create, and delete experiments.

• Running the client in the Flash Player, hence having a persistent data
model, avoids otherwise necessary page refreshes to update data in
the application.

2.2 Specifications

Meeting with the people responsible for the original catalog and the fu-
ture users of the RIA, Mr. Byland and two physics assistants, we discuss
how the specifications for the application should look like. The specifi-
cations include functional and technical requirements. Before meeting, both
parties collect some thoughts and expectations for the new catalog. The
school’s representatives work out the functional requirements, i.e. the tasks

7

the RIA should be able to handle, since they will eventually be the users of
the new system and have experienced the advantages and disadvantages of
the previous set-up. Since I possess the technical know-how, my thoughts
are mainly concerned with the technical requirements of the RIA and the
transformation of the functional requirements into business rules, which are
both discussed in the next sections.

2.2.1 Functional Requirements

The people involved at the school want the following features, called func-
tional requirements, to be incorporated into PHYRE. They expect that users
working with PHYRE should be able to . . .

• . . . browse the catalog for experiments.

• . . . find experiments by using a built-in full-text search.

• . . . view information on experiments, including associated files, com-
ponents and their storage location.

• . . . add, update, and delete experiments.

• . . . add, update, and delete components.

• . . . upload, update, and delete files.

• . . . link components and files to experiments.

2.2.2 Business Rules

”[Business Rules are] the laws, regulations, policies, and procedures that are
encoded into a computer system. Also known as business logic.” [6]

The essential business rules for PHYRE were derived from the original ex-
periments catalog and the functional requirements as follows:

I The catalog is made up of different categories.

II Categories can be nested.

III Categories hold experiments.

IV Experiments are assigned to not more than one category.

V Experiments have a name and description.

VI Experiments contain components and files.

VII Components and files can be shared among several experiments.

VIII Components have an ID that defines their storage location.

8

2.2.3 Technical Requirements

Contrary to web sites, RICH INTERNET APPLICATIONS need a rich client
to run on. For PHYRE I chose the Macromedia Flash Player to act as the
rich client. One of the goals I set myself, is to build the application to be
open to extension. This is achieved by a tier–, component– and object–oriented
approach in the design of the application architecture, which is discussed
in section 5. PHYRE makes use of the following computer languages4:

AS 2.0 ActionScript 2.0 is used to control the behavior of Flash movies5 and
is, similarly to JavaScript, based upon ECMAScript6. AS 2.0 was in-
troduced with the seventh version of Macromedia Flash. It matured
dramatically since ActionScript 1.0 and now supports static typing,
which is a huge step forward for the debugging process, and offers
the most important features that make it an object–oriented language.
For example, it now supports classes, interfaces, inheritance and poly-
morphism – aspects that reduced the redundancy of code and made
PHYRE have a much clearer structure.

PHP 5 Hypertext Preprocessor. Handles the communication between appli-
cation front-end and back-end. The Flash Remoting service, men-
tioned in section 8.1, is a PHP class that contains all the methods to
handle access to the MySQL database.

HTML Hypertext Markup Language. The WWW is made up of web sites
formatted in HTML. In an RIA the rich client takes over the role of the
presentation tier, which is discussed in section 5.4. Therefore HTML
was used only in the deployment of PHYRE. The page in which the
application is embedded is formatted with HTML.

SQL The Structured Query Language (pronounced sequel) is used to fetch,
insert, update, and delete data from the catalog database.

A very positive side-effect of running PHYRE in the Flash Player is its
platform independent look & feel. This is a huge advantage over RICH IN-
TERNET APPLICATIONS using DHTML7 where cross-browser compatibil-
ity is very hard to achieve. Usually, the cost of using non-standard tech-
nologies is their limited availability. In the case of the Flash Player, this

4Some of these are not considered real programming languages, the reason why the term
computer languages is used.

5Flash files (*.swf) are called movies because of the origin of Flash as vector animation
tool and the timeline based development approach.

6”ECMA International is an industry association founded in 1961 and dedicated to the stan-
dardization of Information and Communication Technology (ICT) Systems.” [7]

7Dynamic HTML is an integration of JavaScript, Cascading Style Sheets (CSS), and the
Document Object Model (DOM). It is used to enable more interactivity in otherwise static
HTML pages.

9

aspect is not very disconcerting because its market penetration, as of Sep-
tember 2004, is over 80% for version 7 and for older versions even as high
as 98.2% [8]. This makes it the world’s most pervasive software platform.
Furthermore, the browser plug-in is available for all major operating sys-
tems such as Microsoft Windows, Mac OS, Linux, and Solaris. From the
server’s point of view, PHYRE needs to run on a machine which supports
PHP and MySQL. However with its tiered architecture, which is discussed
on page 16, it could be ported to other systems with a comparatively small
effort.

2.2.4 User Requirements

After having tested PHYRE on different machines and browsers, the follow-
ing requirements were set:

Minimum requirements
Flash Player 7.0.14
1024 x 768 or higher screen resolution
Pentium III 1 GHz or equivalent

Recommended requirements
Flash Player 7.0.14 or higher
1280 x 1024 or higher screen resolution
Pentium IV 2 GHz or higher

These requirements are purposely set this high, due to the fact that
Flash Player 7 is not very fast at executing large amounts of code, which
RIA like PHYRE contain. First insights into the next Flash Player genera-
tion, code-named Maelstrom, look very promising, although the following
statements are yet to be confirmed by the actual release and independent
tests of the next generation Flash Player.

Maelstrom’s performance when executing ActionScript was increased
dramatically, as well as its performance during the animation of complex
visual arrangements. The latter was achieved through a technique called
bitmap caching, which allows the next Flash Player to render unchanging
vectors as bitmaps [9]. A demonstration of Maelstrom at a major conference
showed a framerate increase of over 800% in one case [10].

10

3 Technologies

3.1 Introduction

One of the goals while planning PHYRE was to use free, open source, and
community-supported software as an alternative to commercial solutions
whenever possible. The first reason is, that a student’s budget for software
licenses is limited. The second reason is, to show what possibilities there
are to build RIA with no need for expensive, proprietary technologies, if
one has the necessary know-how.

Obviously, it is not always possible to find an open source and free
equivalent for a certain technology, that also satisfies the requirements.
While planning PHYRE, this became clear in the case of Flash. At the time
of writing, there simply is no viable alternative to build sophisticated user
interfaces. Since I have used Flash for many years I know its strengths and
also its weaknesses, but I also know that it can live up to the expectations
and meet the requirements better than any other solution known to me.
All other components of the system are open source and free, starting with
the database, which runs with MySQL, AMFPHP is used as connector be-
tween database and user interface, while the whole application runs on an
Apache server.

The next sections give a deeper insight into these technologies.

3.2 Macromedia Flash

At the time of writing, the current version is Flash MX 2004, which is the
seventh version in the line of the software. Macromedia Flash has come
a long way from just a vector animation tool to a sophisticated and pow-
erful tool for application developers as well as designers. Macromedia is
targeting the market of self-contained web applications that enrich the user
experience by using Flash to create more dynamic, flexible and intuitive
user interfaces than other web technologies like HTML would allow.

3.3 AMFPHP

A database driven application needs a way to exchange data between data-
base and front-end as efficiently as possible. AMFPHP is a technology writ-
ten in PHP8 to emulate the capabilities of a software originally developed
by Macromedia, called Flash Remoting. Flash Remoting, unveiled in 2001,
is a proprietary, highly efficient technology to connect Flash applications
to the server. The benefits when choosing Flash Remoting over other tech-
nologies are performance and seamless integration with Flash. It uses a
binary message format, designed for the ActionScript object model, called

8Hypertext Preprocessor

11

Action Message Format (hence the AMF in AMFPHP). The usual way of
exchanging data in Flash, is to send it through HTTP9 using either of the
two built-in functions getURL or loadVariables. Data exchange with those
two functions does not allow the transmission of complex data types like
arrays or objects and does not offer a suitable solution for debugging. With
the advent of Flash 5, XML10 became another option for developers to han-
dle data exchange. The problem of complex data types was solved because
XML allows data to be structured. Although XML solves many of the pre-
vious problems, data still has to be parsed and formatted in order to be
sent and received. For little amount of data to be sent, XML needs a big
amount of markup to structure a file. Handling large XML structures can
fail because of the following two factors:

I Bandwidth
Although the number of broadband connections is continuously grow-
ing, the markup to describe the structure of a large XML document
can quickly cause undesirable latency for the user until it is loaded
completely.

II Client-Side Performance
One of Flash’s downsides is the lack of support for specific hardware
acceleration. Parsing large XML structures can cause the client to
slow down or idle at best, or at worst, the client’s CPU usage would
skyrocket and eventually the client machine would crash.

To address those two issues, Macromedia released Flash Remoting. Be-
cause of its binary approach to data encoding, it allows complex data and
custom objects to be transmitted very efficiently. One of the few reasons
not to use Flash Remoting is its price tag. By propagating the technology
by means of a lower price, hosting companies could have offered Flash Re-
moting together with even their lower-priced plans and made Flash Remot-
ing the standard solution for data exchange with Flash. While Macromedia
missed out on their big chance, some members of the open source commu-
nity recognized the potential of Flash Remoting, hence reverse-engineered
the Action Message Format and ported Flash Remoting to other languages
than the already available versions for Java, .NET and ColdFusion. AMF-
PHP was the first version of Flash Remoting released on a different plat-
form than the three original ones; others followed. At the beginning, AMF-
PHP was simply an experiment to make Flash Remoting run on PHP, but
as soon as more developers saw that it was working rather well, even in the
beta version, they started to jump on the bandwagon. After some hesita-
tion because of legal issues concerning Macromedia’s role as inventor of the

9Hypertext Transfer Protocol
10eXtensible Markup Language

12

Action Message Format, everything became clear when the developers of
AMFPHP got in touch with the company and their efforts were endorsed.

Sometime later, Macromedia published an introductory article on lever-
aging Flash Remoting through AMFPHP in the developer’s section of their
web site, which marked the beginning of the legal coexistence of AMFPHP
and Flash Remoting [11].

3.4 MySQL

Since PHYRE is hosted on a Linux server running Apache and uses some
sort of PHP technology (which AMFPHP is), running the database with
MySQL was a logical consequence. ”MySQL has become the most popular open
source database and the fastest growing database in the industry”, its own web
site claims [12]. MySQL is the standard database choice for non-commercial
projects: It offers seamless integration with PHP, is very fast, and is sup-
ported by a large community.

13

4 Programming Techniques

4.1 Introduction

This section provides a short insight into the different programming tech-
niques and concepts used in the development of PHYRE. Discussing all
the details of the techniques mentioned here, would go beyond the scope
of this paper. However, this section gives a short introduction to the most
important concepts and techniques, while Appendix A provides additional
resources which should answer further questions.

4.2 OOP: Object–Oriented Programming

While working on larger software projects, developers may encounter sev-
eral problems. One of them is, that the dependency of inherently inde-
pendent parts of a system increases as the system’s complexity grows, and
therefore the flexibility of the overall system decreases. These circumstances
benefit the introduction of bugs11 into the application and make it harder
to maintain and extend it. Object–oriented programming (OOP) is a con-
cept which is well-known and established amongst developers who work
with high level languages12 such as Java, C++ or C# but fairly new to most
Flash developers and the ActionScript language. Colin Moock, author of
many acclaimed Flash books, describes OOP as ”a different approach to pro-
gramming, intended to solve some of the development and maintenance problems
commonly associated with large, procedural programs. OOP is designed to make
complex applications more manageable by breaking them down into self-contained,
interacting modules.” [14].

Without the use of the OO programming concept I would not have been
able to develop and test a RICH INTERNET APPLICATION all by myself and
in such a short period of time.

11A programming error that causes a program to work poorly, produce incorrect results,
or crash. A bug is different from a glitch, which refers to a hardware problem and not a
software problem.
Note: The term "bug" was coined when a real insect damaged one of the circuits of the first electronic
digital computer, the ENIAC. [13]

12A high-level programming language is a programming language that is more user-
friendly, to some extent platform-independent, and abstract from low-level computer
processor operations such as memory accesses. [18]

14

4.3 Design Patterns

”Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder,” is what the authors of Design Patterns, by the com-
munity fondly given the name of Gang of Four, observed rightfully [15].
With their seminal book named after their findings, the first time in history
someone wrote down a collection of undocumented concepts of conversant
software developers called design patterns.

Christopher Alexander, architect and father of the Pattern Language
movement in computer science, says:

”Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice”13 [16].

Today, design patterns play an important role in modern software ar-
chitectures.

4.4 Refactoring

”Refactoring is changing code structure without changing its function.” [17]

Martin Fowler was first to write a book about refactoring, namely Refactor-
ing – Improving the Design of Existing Code [19]. The refactoring process helps
to improve maintainability, flexibility, and readability of code. During the
development of PHYRE I refactored many classes in order to add new func-
tionality to them more easily. To fully understand and apply the concepts
of refactoring, I warmly recommend Martin Fowler’s book.

13found in the Design Patterns book [15]

15

5 Three–Tiered Application Architecture

5.1 Introduction

Applications today are typically designed in a tiered fashion. Each tier has
a certain function. Web deployed applications are usually split up in three
tiers. Figure 1 illustrates the structure of PHYRE’s three–tiered application
architecture:

Figure 1: PHYRE’s Three–tiered Application Architecture

5.2 Data Tier

The data tier14 is responsible for storing all the data the application needs to
access. In the case of PHYRE, the data tier consists of a single MySQL data-
base, in other cases it could also be a web-service or any other data source.
PHYRE’s database stores all the catalog’s data and organizes it in a mean-
ingful way. The database’s design is defined by the entity-relationship
model, which is discussed in section 6.

5.3 Business Tier

The business tier’s15 duty is to give the client access to the data tier in order to
enable it to retrieve, update and insert data. Although data’s integrity and
validity is checked in all tiers, it is done mainly in the business tier. Data
is received from different places but in order to get stored in the data tier it
must pass the business tier, so validation is best done there. For example,

14In other environments known as integration tier.
15Also referred to as middle tier.

16

before an application stores certain data it must make sure its format is
correct, such as date formats, which get to the business tier in all kind of
forms. Business rules are applied in the business tier, such as the fact that
an experiment belongs to not more than one category and a certain storage
location cannot exist more than once.

5.4 Presentation Tier

PHYRE’s user interface is located in the presentation tier16. This tier plays a
vital role because it makes the connection between the user and the under-
lying application logic. It must guide the user to the information she or he
needs and present it in a concise form.

5.5 Benefits

The benefits of structuring an application in tiers becomes obvious when
underlying technologies have to be changed. Imagine the application needs
to move its database to a different server, and therefore has to use another
vendor’s database product. If data storage was contained in the rest of the
application, the whole application would have to be adjusted. This process
costs valuable time and possibly breaks the application. Because the ap-
plication is designed in tiers, all that has to be done is an adjustment to the
business tier in order to support the new database’s specific functionality—
no changes whatsoever have to be done to the presentation layer because it
is independent from the data tier and communicates with it solely through
the business tier.

16Also known as client tier.

17

Part II

Building PHYRE

With PHYRE, I built my first RICH INTERNET APPLICATION and therefore
took it as an opportunity to experiment with different development tech-
niques and to learn about the process behind building an RIA. This part
of the paper presents the most interesting problems I encountered (also the
ones that caused the biggest headaches) and the solutions I come up with.
Read through it and take it as an initiative to look further into PHYRE’s
architecture and to learn from it.

6 PHYRE’s Catalog Database

”The first step in creating and using a database is to establish its structure” [20].

This section provides an insight into design considerations during the mod-
eling process and the necessary basics to analyze and comprehend PHYRE’s
underlying database model. The following steps refer to the accompanying
database diagram, which is called entity-relationship model (ERM).

6.1 The Entity-Relationship Model

The process of modeling a database is based upon the functional require-
ments and business rules which were earlier agreed on (Section 2.2.2). Either
with paper and pen or with a database modeling tool the catalog’s different
tables and the relationships between them are laid out.

First, I started out with a categories table which stores the catalog’s cat-
egories. Determining the attributes that define a category is an essential
step. I came up with the following attributes which are followed by their
respective data types17 written in capital letters:

category_id INTEGER
The primary key (PK) of the categories table. It gives every category a
unique identity. A certain PK does not exist more than once in a given
table, even after deleting and inserting new data records.

name VARCHAR
The name of the category that will be used for display.

description TEXT
Explains the category’s purpose closer. By default, the description is
not displayed in the application.

17The article ”MySQL Database Design” lists MySQL’s supported data types [20].

18

sortorder SMALLINT
Defines the order of appearance of a certain category. Categories are
displayed in alphabetical order if this attribute is missing.

Looking at the ERM, you can see a few more attributes that the categories
table has, such as modified_by_user_id, created_by_user_id, date_modified,
and date_created. While examining other database tables, you will en-
counter these attributes again. Their purpose is to internally keep track of
changes done to the data in the catalog database. When a new category is
added to the catalog, its date of creation is saved, as well as the ID of the
user who added it. Likewise when a category’s attributes are changed, its
modification date and again the ID of the user who modified it are saved.
These attributes enable the user to not only sort experiments by their name
but also by their dates of creation or modification. This way, a user can
quickly find the oldest experiment of a certain category or the most recently
updated one.

A special attribute of the categories table is parent_category_id, to which
section 7 is dedicated.

6.2 Relationships & Business Rules

The categories and consequently the first table is now completely set up. As
from now, PHYRE can store its own set of categories. Allowing PHYRE to
store experiments and defining their affiliation to a specific category is the
next step: PHYRE gets an experiments table with the following attributes:

experiment_id INTEGER
PK and an experiments unique identifier.

category_id INTEGER
Foreign Key (FK) of the categories table. Used to link an experiment to
a certain category. For further explanation please read on.

name VARCHAR
The name of the experiment that will be used for display.

description TEXT
The description can be used to specify the necessary settings that have
to be adjusted prior to the demonstration of the experiment. Other-
wise, it is also used to refer to illustrations or photos that show how
to set up and carry out the experiment.

quantity SMALLINT
The total quantity of the experiment. For future uses like the integra-
tion of a check-out system for experiments.

19

quantity_available SMALLINT
The currently available quantity of the experiment. For future use
only (see quantity attribute.)

note TEXT
Further notes for the experiment that are not displayed in the appli-
cation.

metainfo TEXT
Comma separated list of keywords: used by the full-text search mod-
ule.

All other attributes of the experiments table, as seen on the ERM, like
date_modified, date_created etc., are explained in section 6.1.

20

According to Business Rule IV, experiments are assigned to at least but
not more than one category:

”How do I apply Business Rule IV in terms of database modeling?”

In order to apply Business Rule IV, I set up a relationship between the
experiments and the categories table. Table 1 shows the three different types
of relationships that exist in RDBMS18:

one-to-one relationship (1:1)
is probably the least common of the three, where a primary key value
matches only one (or no) record. These relationships are almost al-
ways forced by business rules and seldom flow naturally from the
actual data.

one-to-many relationship (1:n)
is the most common relationship, in which the primary key value
matches none, one, or many records in a related table.

many-to-many relationship (n:m)
occurs when both tables contain records that are related to more than
one record. [MySQL] doesn’t directly support a many-to-many re-
lationship, so you must create a third table: an associate [or assign-
ment] table. It contains a primary key and a foreign key to each of
the data tables. After breaking down the many-to-many relationship,
you have two one-to-many relationships between the associate [or
assignment] table and the two data tables.

Table 1: Overview: Relationship Types [21].

Since each experiment belongs to one category but each category can
hold several experiments, the needed relationship between these two tables
is a one-to-many relationship (1:n). After having figured out the relation-
ship I need, I add the attribute category_id to the experiments table. When
PHYRE’s catalog accommodates a new experiment, it inserts the primary
key of the category it belongs to into the category_id field.

18Relational Database Management Systems

21

This way, an experiment knows to which category it belongs. On the
other hand, the categories table has no reference to any experiments what-
soever, since such a redundancy should be avoided whenever possible.
Hence the code needed to fetch all experiments that belong to a certain
category is fairly simple and looks like this:

1 function getExperimentsByCategoryID ($p_id) {
2 $result = mysql_query("SELECT experiments. * FROM experiments
3 WHERE experiments.category_id = " . $p_id);
4 return $result ;
5 }

It is important to know how the technical denotation of relationships
in ER diagrams, for example in the one that comes with this paper, looks
like. There are a number of notations used: Figure 2 shows the three dif-
ferent relationships I discussed with their respective symbols in Crow’s Foot
notation:

Figure 2: Relationships in Crow’s Foot Notation

22

An example for a many-to-many relationship is the linkage of experi-
ments and components, since one experiment is made up of different com-
ponents, and at the same time, a certain component can be part of many
experiments (Business Rule VI & VII). In MySQL, this relationship is set up
by using an assignment table, for example experiments_components_assign in
PHYRE’s ERM, which actually breaks the many-to-many relationship into
two separate one-to-many relationships. For an explanation of this kind of
relationship, please refer to Table 1 on page 21.

Many-to-many relationships are handled similarly to the other two re-
lationships. The only thing that changes, is the code to query the database.
For example, in order to get all components that are used in an experiment,
you have to use an SQL JOIN statement (line 2–6), which is not explained
in detail, so please refer to Appendix A for additional resources.

Enough said, the following is the function to fetch all components which
are used in a certain experiment:

AMFPHP Service — ch.gasi.phyre.Catalog

1 function getComponentsByExperimentID ($p_id) {
2 $result = mysql_query("SELECT c. * FROM components c
3 LEFT JOIN experiments_components_assign
4 eca USING (component_id) LEFT JOIN
5 experiments e USING (experiment_id)
6 WHERE e.experiment_id = " . $p_id);
7 $i = 0;
8
9 while($component = mysql_fetch_object($result)) {
10 $components [$i] = $component ;
11 $location_id = $component - >location_id ;
12 $components [$i]- >location =
13 $this - >getLocationPath ($location_id);
14 $i ++;
15 }
16 return $components ;
17 }

With the information about databases and data relationships given in
this section, you should be sufficiently savvy to explore PHYRE’s data tier
and its ERM on your own. Recall PHYRE’s Business Rules from section 2.2.2
and try to find out how they are implemented by looking at the entity-
relationship model. The next section is dedicated to the special treatment
of hierarchical data in an application.

23

7 Hierarchical Data & Recursion

After having understood Business Rule II, which states that categories can
be nested, the following question probably comes up:

”How do I store hierarchical data, such as nested categories,
in a RDBMS19 like MySQL?”

The solution is really straight-forward: I add a new attribute to the cat-
egories table called parent_category_id in which I can save a category’s ref-
erence to its parent category. Categories at the top of the hierarchy simply
have a default value of 0 in their parent_category_id field.

Retrieving the categories from the database is done quickly, but parsing
it into a hierarchical tree for display in the presentation tier is a little trickier.
At first, the problem appears to be easy to solve: the categories are fetched
from the catalog database and with a loop they are checked for possible
sub-categories that belong to them. After that, these categories are nested
appropriately. Until here, everything seems fine, but with this approach
you only get the first and the second level of the hierarchy. No problem,
the algorithm gets another loop to check sub-categories for having sub-
sub-categories. Now you get three levels deep into the hierarchy. Then you
start asking yourself:

”Does that mean that for every level I want to get deeper into the
hierarchy I need another loop with the exact same code that checks for
child categories?”

Something cannot be right—you look at your code and you know: This
code smells20. The method for solving such quite frequently occurring prob-
lems is recursion. In terms of programming, a function that calls itself dur-
ing its execution is called a recursive function. Applying recursion to our
previous problem, the following changes: after checking a category for chil-
dren we do not write another loop to fetch those children and again check
those for child categories themselves, instead the function calls itself again
to perform this very task. If the condition returns false, the function simply
takes the next category and performs the same tasks until it is completely
through the whole hierarchy.

Page 26 shows an excerpt from the code of PHYRE’s AMFPHP service.
The buildTree method (line 21–34) is a recursive function. After having
fetched the categories from the database, it builds an XML tree; XML is
the format that Flash’s Tree component needs to display the hierarchical
data. The if construct on line 30 checks for categories that have the current

19Relational Database Management System
20Amusing expression used in Martin Fowler’s book Refactoring [19].

24

category as parent. If it finds any, the function calls itself (line 31) in order
to start the same procedure over again.

In retrospect, the buildTree method turned out to be small and simple.
Still, I spent a lot of time getting this little function to run. First, the nesting
of the categories XML file was incomplete since I worked with a procedural
function before using the described recursive approach.

After I rewrote it to a recursive function, the function’s call to itself
failed over and over again. As usually, it turned out to be a simple problem
which was related to my just freshly acquired, and therefore limited PHP
knowledge. The catalog service is a PHP class, and therefore each function,
according to object–orientation, is a method of this class. Contrary to Ac-
tionScript 2.0, where it is optional, PHP insists on the $this keyword (line
14 & 31) in order to call a method of a class within itself.

The previous little problem is a typical example for the fact that no mat-
ter how many times you read the documentation, there is no guarantee
that you actually know its contents until you use part of it, and preferably
fail while doing so. From that point on, you will never do it wrong again,
guaranteed.

25

AMFPHP Service — ch.gasi.phyre.Catalog

1 function getCategories () {
2 $doc = new DomDocument();
3
4 // Document properties
5 $doc - >encoding = "UTF-8" ;
6 $doc - >standalone = true ;
7
8 // Create an empty element
9 $root = $doc - >createElement ("categories");
10
11 // Append root element
12 $doc - >appendChild ($root);
13
14 $this - >buildTree ($root , 0, $doc);
15 $output = $doc - >saveXML();
16
17 // Retrieve and print the document
18 return $output ;
19 }
20
21 function buildTree ($p_node , $p_id , $p_doc) {
22 $result = mysql_query("SELECT categories. * FROM categories
23 WHERE categories.parent_category_id = " . $p_id);
24 while($row = mysql_fetch_object($result)) {
25 $element = $p_doc - >createElement ("item");
26 $element - >setAttribute ("label" , $row - >name);
27 $element - >setAttribute ("id" , $row - >category_id);
28 $p_node - >appendChild ($element);
29
30 if (mysql_num_rows($result)) {
31 $this - >buildTree ($element , $row - >category_id , $p_doc);
32 }
33 }
34 }

26

Figure 3 shows the XML structure which is returned by the buildTree
function discussed before, on top and the visual representation in the user
interface on bottom:

Figure 3: XML and Tree View of PHYRE’s categories

27

8 User Authentication & Access Control

8.1 Introduction

PHYRE is not only built to enable users to view information that resides
inside the catalog, it is also supposed to give users a way to modify or
insert new data into the database.

How can users modify the underlying data of PHYRE’s catalog?

I integrated an administration module directly into PHYRE’s user inter-
face. Again, as you can see in the case of PHYRE, this is a big advantage of
RICH INTERNET APPLICATIONS over conventional web applications, since
you do not have to create a separate page for the purpose of administra-
tion. Obviously within the RIA, the administration is a separate module,
although user can access it without having to leave the main application.

This section is concerned with two topics, namely user authentication &
access control: To ensure a system’s underlying information’s integrity and
veracity you have to be able to control which users get access to it and what
rights are given to them.

Users of PHYRE that are authorized to insert or modify information,
namely physics teachers and perhaps other school personnel, have to get a
user account that will be stored in the database. After being registered, a
user can log himself into the application by entering his unique user name
and password. During the authentication process the application retrieves
the user’s login data from a login form in the user interface and verifies it
against the data stored in the database.

8.2 Sensitive Data & MD5

What are MD5 and secure hashes and how are they relevant to a sys-
tem’s user authentication mechanisms?

If you are familiar with the answers to this question please go ahead
and carry on reading on page 30. If you have not previously dealt with
user authentication or software security in general, it is helpful to read the
following introduction to MD5:

First, let me tell why you should care about your applications security:
In my opinion, which is shared by many other application developers, a
well thought-out system should never store or transmit its sensitive data as
plain text. Storing a user’s password as plain text means that it can be read
easily by anybody with access to the database, including yourself, which is
a clear violation of the user’s privacy.

You might wonder what other choice you have, since a stored password
has to be compared to the password the user enters every time she or he

28

wants to log into your application, and therefore has to be available as plain
text.

There is an option, and this is where the Message-Digest algorithm 5
(MD5), designed by Ronald Rivest in 1991, comes into play. For a discus-
sion of the inner workings of MD5 please refer to the sources listed in Ap-
pendix A; this paper discusses only the aspects of MD5 that are relevant to
this section’s topic.

MD5 provides exactly the kind of functionality we need to protect sen-
sitive data while still being able to work with it. Contrary to general per-
ception, MD5 is not an encryption algorithm but rather a one-way hash
function which, in simple terms, calculates a fixed-length, unique string,
called secure hash, from any given input. This definition of MD5 should
answer the often posed question of its reversibility: MD5 is not reversible
(unless you have a hundred computers working on it day and night!) That
is, it is close to impossible to find the originally entered value if you only
have its corresponding MD5 hash.

Probably many of us know the situation where you forget the password
to a service like an e-mail or a shopping account. Often times, there is an
option to let the provider of the service send you an e-mail with a new
password. Maybe, or maybe not, you have wondered why some providers
send new passwords instead of the original ones. If you receive a new
password, it is very likely that the provider did not even store your actual
password in the first place, but only its unique hash, which was computed
by MD5 or a similar algorithm. That is, next time you get a new password,
be thankful, since someone decided to respect your privacy!

29

8.3 Implementation

PHYRE’s implementation of the authentication mechanism is described on
the following pages. Please read the steps carefully and refer to the actual
code in PHYRE whenever needed.

8.3.1 Prerequisites

The database has a users table where all the authorized users of the RIA are
stored. The three essential attributes for the authentication mechanism are:

user_id INTEGER
The primary key (PK) of the user table. It assigns a unique ID number
to every user.

username VARCHAR
Every user has a user name that is unique across the system, which
ensures a smooth authentication process.

userpass VARCHAR
A user’s personal password, which is not stored as plain text but
rather as a secure hash calculated by the previously discussed MD5
algorithm.

Before a user can log into the RICH INTERNET APPLICATION, she or
he has to have a user account. When a new user account is created, its
corresponding password is stored as an MD5 hash in the users table.

30

8.3.2 Login

Having set up the users table as a necessary prerequisite for PHYRE’s user
authentication mechanism, let us look at what happens behind the scenes
when a user wants to log into the application:

Note: At the time of writing, AMFPHP 1.0 was not available, although close
to release. Therefore the code examples and the process of user authentication refer
to the beta version AMFPHP 0.9.0b which is used in PHYRE.

• Each time a user tries to enter PHYRE’s restricted area but has not
been authenticated yet, the application shows a window with a login
form that asks the user to enter his user name and password as seen
in Figure 4.

Figure 4: Login screen in PHYRE

• When the user presses the login button, his user name and password
are passed on as parameters to the doLogin method of the Catalog
class (line 1 & 2), whose code is listed on page 38.

• The doLogin method takes the user’s password and calculates a se-
cure hash using the MD5 algorithm (line 6).

• On the client, the user name and password are passed on to the set-
Credentials method of the Service class (line 8). The Service class
is specific to Flash Remoting, and is responsible for creating a con-
nection to the AMFPHP service on the server-side. Its setCredentials
method is used to set a user name and password for a certain connec-
tion. Figure 5 shows how a setCredentials method call causes Flash

31

Remoting to add a credentials header to the connection. This allows
authorized users to invoke actions, for example inserting new data
into the catalog, which are not granted to unauthorized users.

Figure 5: The effects of the setCredentials method call as seen in the Net-
Connection Debugger, the debugging tool for Flash Remoting connections.

• Without going into much detail, let us take a look on how certain
methods of PHYRE’s AMFPHP service are secured for access to au-
thorized users only:

1 "addExperiment" => array(
2 "description" => "Adds a new experiment
3 to the catalog" ,
4 "access" => "remote" ,
5 "roles" => "admin" ,
6 "arguments" => array("p_category_id" ,
7 "p_user_id" ,
8 "p_name" ,
9 "p_description" ,
10 "p_metainfo")
11)

This is an excerpt from the catalog service’s method table which lists
all its methods and properties. Because the addExperiment method is

32

used to add new experiments to the catalog, it is definitely one of the
methods that should be protected against access from unauthorized
users.

Besides a general description (line 2, page 32) of the method, which
can be helpful in the debugging process, the method table defines
its access property (line 4), which has to be set to remote in order
to be accessed from a client, and a list of arguments it takes (line 6–
10). From a security’s point of view, the most important attribute it
defines, is the roles attribute (line 5). The roles attribute, as seen in the
complete source of the catalog service, is only defined for methods
with certain access restrictions. In this case, the roles attribute has
the value admin, which means, that only users of the group admin
can access this method. This is how we can prevent abuse through
unauthorized users.

• Going back to the situation where the doLogin method, which is
listed on page 38, is called on the client, you maybe noticed that the
method not only calls setCredentials on the connection (line 8) but
also doLogin on the service itself (line 11).

The reason for the latter call is, that after setting the credentials for a
connection, you have to call a method on the service that is accessible
only if the client is authorized, in order to check if the authentication
of the user succeeded. When the secured doLogin method is called,
it processes the information of the connection’s credentials header in
the service’s _authenticate method.

The _authenticate method is a function you have to provide in your
service in order to allow AMFPHP to internally authenticate users. A
listing of it is found on page 39.

• The _authenticate method takes the user name and password from
the credentials header and queries the database (line 9–13) for such
a user. If the user exists and its password’s hash matches the one
stored in the database (line 15), the method stores the user’s ID in a
session, so that it can be retrieved by other methods of the class at
any time later21, and returns the group the user belongs to. If no such
user was found, or any other problem occurred during the process,
_authenticate returns false.

21The workaround with the session variable is needed because PHP is stateless.

33

Note: Maybe you noticed the line in the _authenticate method on page 39
that is commented out. Why was it written in the first place if its not used
anymore?

Because Flash does not feature a built-in MD5 function, PHYRE calculated
the hash in the business tier with the MD5 function provided by PHP (line
8). This approach did not satisfy me because passwords were being trans-
mitted from the client to the server unprotected. After some searching, I
eventually found an ActionScript 2.0 class that provides MD5 functional-
ity. Having implemented it on the client, passwords are now safe as soon
as the user presses the login button and do not have to be processed on the
server. Therefore the commented out line (line 8), which calculated the pass-
word’s hash, is not needed anymore and left in the source only for the sake of
this note.

• If the user has been authenticated, she or he now belongs to the ad-
min group. Recall how we previously set the roles attribute for the
doLogin method and defined that the only group allowed to execute
it, is the admin group (line 5, page 32).

At this point, doLogin returns the user’ ID, which is retrieved from
the session variable (line 26, page 39) previously set by the _authen-
ticate method, as well as a status variable (line 25) that verifies that
the user is authorized to make changes to the catalog. Being authen-
ticated, the user can now access the administration PHYRE’ module
(Figure 6).

34

Figure 6: PHYRE’s Administration Module

35

• If the system doesn’t know a user with the supplied user data, the
doLogin method throws an error that is caught on the client and dis-
played as seen in Figure 7.

Figure 7: Error message displayed after a failed authentication attempt.

36

8.3.3 Logout

Often times not mentioned, but for the sake of completeness, here is a de-
scription of how to implement a logout mechanism in an application. Af-
ter having read the previous pages you should understand how the login
mechanism works. The logout mechanism actually works similarly: it re-
sets the connection’s credentials header by calling setCredentials with two
empty strings as arguments (line 24, page 38). At the same time, it calls
the doLogout method on the service which logs out the user on the server
(line 26). The server-side logout call is found in line 32, on page 39, in the
doLogout method.

8.4 Conclusions

I hope this sections showed that security in RICH INTERNET APPLICATIONS

deserves more attention as more and more users will use such applications
in the future. As soon as sensitive data like credit card information and
social security numbers are being processed in an RIA, it should implement
a well thought-out security concept that makes sure that the data is safe
from third at any time.

This section outlined the pillars of such a security concept. PHYRE’s
implementation can be used as an example for basic user authentication
and access control mechanisms.

Having come this far, it is easy to extend the system, for example to
support user groups that grant certain rights only to members of a certain
group. Consider having a superadmin group whose members can create
new user accounts or delete existing ones. I am sure you can think of even
more possibilities . . .

Important Note: The herein described approach is not meant to be the ultimate
security solution for an RIA but merely makes sure that sensitive data like pass-
words are not revealed as plain text. Passwords and their respective hashes can still
be intercepted during transmission and possibly be used to make an application
authenticate even unauthorized users. In order to better secure your application,
please consider using a Secure Socket Layer (SSL) connection for the transmission
of sensitive data.

37

8.5 Code Listings

ActionScript 2.0 — ch.gasi.phyre.Catalog

1 public function doLogin (p_username : String ,
2 p_userpass : String) {
3
4 trace ("#Catalog# doLogin()");
5 var m_username : String = p_username ;
6 var m_userpass : String = MD5.calculate (p_userpass);
7 var conn = m_catalogService.connection ;
8 conn.setCredentials (p_username ,
9 p_userpass);
10
11 m_pendingLogin = m_catalogService.doLogin ();
12 m_pendingLogin.responder =
13 new RelayResponder (this ,
14 "onLoginSuccess" ,
15 "onLoginFailed");
16 }
17
18
19 public function doLogout (Void) {
20
21 trace ("#Catalog# doLogout()");
22
23 var conn m_catalogService.connection
24 conn.setCredentials ("" , "");
25
26 m_pendingLogout = m_catalogService.doLogout ();
27 m_pendingLogout.responder =
28 new RelayResponder (this ,
29 "onLogoutSuccess" ,
30 "onLogoutFailed");
31 }

38

AMFPHP Service — ch.gasi.phyre.Catalog

1 / *
2 * This function will authenticate the client
3 * before it returns the value of method call
4 * /
5 function _authenticate ($p_username , $p_userpass){
6 $m_username = trim($p_username);
7 $m_userpass = trim($p_userpass);
8 //$m_userpass = md5(trim($p_userpass));
9 $m_query = mysql_query("SELECT users. * FROM users
10 WHERE users.username
11 = ’$m_username’ AND
12 users.userpass =
13 ’$m_userpass’");
14
15 if(mysql_num_rows($m_query) == 1) {
16 $user = mysql_fetch_object($m_query);
17 $_SESSION["user_id"] = $user - >user_id ;
18 return "admin" ;
19 } else {
20 return false ;
21 }
22 }
23
24 function doLogin () {
25 $result ["login"] = true ;
26 $result ["user_id"] = $_SESSION["user_id"];
27
28 return $result ;
29 }
30
31 function doLogout () {
32 Authenticate :: logout ();
33 return true ;
34 }

39

9 Design Patterns in PHYRE

This section discusses where design patterns are found in PHYRE and shortly
presents the underlying thoughts and reasons for their use.

Because this section’s topic has already filled many books, this paper
cannot provide the theoretical background which is probably needed to
understand the following situations in which design patterns are applied.
If you want, or need to know more about design patterns than discussed in
this paper, please refer to Appendix A for additional resources.

While reading the following cases, it might be helpful to use the archi-
tecture diagram of PHYRE, which comes with this paper, as a visual aid.
Also remember to take a look at the source code from time to time to see
the actual implementation of the presented patterns.

9.1 Singleton

The intent of the Singleton pattern as described in the design patterns cat-
alog:

Ensure a class only has one instance,
and provide a global point of access to it. [15]

Besides the fact that it is generally known that the overuse of singletons
is bad, this pattern turned out to be helpful in the case of PHYRE [22].

During the development of PHYRE, it came out that certain classes need
a global point of access to its main object, namely the Application object.
The Application object is instantiated at the very beginning and is respon-
sible for creating all other objects, for example visual objects like the com-
ponents of the user interface as well as non-visual objects like the catalog
object.

Since the Application class features the following two characteristics,
which are also described in the pattern’s intent, I decided to implement it
as a singleton:

Single Instance
The Application object starts the whole application, and therefore
should only be instantiated once at the beginning. Multiple instances
of the Application object would possibly interfere with each other
and break the application.

Global Point of Access
Other objects in PHYRE should be able to access the Application ob-
ject from any point in the application.

The characteristics of a singleton’s implementation are seen in the Ap-
plication class source: the constructor is declared private and the getInstance
method provides the only access to the object.

40

9.2 Proxy

Computer users are used to elastic interfaces22 from their desktop software
and the web sites they are browsing. Flash has always supported lossless
scaling of its movies because they are, similarly to SVG23, made up of vec-
tors and not pixels, whereas the latter cannot be scaled without a visible
loss of quality. But only since its sixth version, Flash MX, it also offers the
possibility to make Flash movies behave just like web sites or desktop ap-
plications in terms of elastic interfaces.

Although I could have dedicated a whole section to the particularly in-
teresting topic of elastic interfaces, this little introduction was necessary
because the pattern discussed in this section is closely tied to the imple-
mentation of PHYRE’s elastic user interface.

In order to react to changes to the size of a movie, developers have to
make use of Flash’s built-in Stage class.

The problem with the Stage class is, that it does not provide all the
functionality often needed for RICH INTERNET APPLICATIONS. For exam-
ple, I generally do not want an application to resize even further when the
browser window becomes too small because its layout will be so dense that
it would not be usable anymore. I also want to control this minimum size
parameter whenever necessary.

Additionally, it is tedious to set certain parameters, like the scaling
mode of the stage, every time I develop an application like PHYRE, which
should not scale but rather feature an elastic interface.

In order to accomplish these goals, I first wrote complex algorithms in
the Application class itself, which checked the size of the browser window
and then reacted accordingly.

Feeling that the solution I came up with was not ideal, I looked through
the design patterns catalog and found a better solution in the form of a
pattern, namely the Proxy pattern.

22User interfaces that rearrange their layout, instead of being scaled, according to the
dimensions of the window they run in.

23Scalable Vector Graphics

41

The intent of the Proxy pattern as found in the design patterns catalog:

Provide a surrogate or placeholder for another object to control access to it. [15]

I wrote a class, named Canvas, through which other objects in PHYRE

could access all the information they usually retrieved from the built-in
Stage class, such as the width of the movie, as well as make use of the extra
functionality I described.

What are the advantages of using a Proxy?

One of the advantages of using a proxy is described using the width
getter of the Canvas class as example:

1 public static function get width (): Number {
2 var minWidth : Number = Canvas.getMinimumWidth ();
3 var maxWidth : Number = Canvas.getMaximumWidth ();
4 var w: Number;
5
6 if (Stage. width <= minWidth) {
7 w = minWidth ;
8 } else if (Stage. width >= maxWidth){
9 w = maxWidth ;
10 } else {
11 w = Stage. width ;
12 }
13
14 return w;
15 }

As you can see, the width getter first retrieves the minimum and maxi-
mum widths (line 2 & 3) we want our application resize to and then checks
if the actual stage width lies within these boundaries (line 6–9). If not, the
function returns the previously defined maximum or minimum value.

Before using the Proxy pattern, I implemented a similar function in
every object that had to react to changes of the stage’s width. Here is where
the principles of refactoring should be applied: If you write the exact same
logic more than twice, something is not right and should be changed.

When I was in this situation, I wrote the Canvas class acting as proxy
to the Stage object, deleted the redundant code that was scattered among
several classes, and moved it into the Canvas class where it actually be-
longs to. Why? An object that needs to know the width of the stage should
simply request it, without knowing if the returned value is the actual stage

42

width or the previously defined minimum width we want our application
to have.

The default properties for applications featuring an elastic interface are
set in the constructor of the Canvas class. This saves time and code for
every application I build.

The preceding example shows how the process of applying a pattern
generally looks like: You find yourself in a situation that is unsatisfying,
one that might lead to a dead end in terms of maintainability and extend-
ability of your application, and you feel that there probably is a better so-
lution for your problem. You look through a design patterns catalog and
many times you find a pattern that helped other developers in similar situ-
ations, although it has to be adjusted in order to fit your needs.

This necessary adjustment is the reason why design patterns describe
only approaches for solving often recurring problems and are not actual im-
plementations that can be used out of the box.

9.3 Further Patterns Found in PHYRE

The following is a list of a few other useful design patterns which are found
in the architecture of PHYRE:

Command Pattern This pattern is used to encapsulate requests as an ob-
ject. PHYRE uses classes designed after this pattern to perform certain
actions like logging out a user or switching views in the detail view.
To see examples of this pattern, please look into the ch.gasi.phyre.commands
package.

Business Delegate This pattern is used to to hide the implementation de-
tails of the business tier. PHYRE’s Catalog class on the client-side,
which is written in ActionScript 2.0, acts as a business delegate. It
reduces coupling between the presentation tier and the business tier.

Model–View–Controller (MVC) This pattern is actually a composite pat-
tern, meaning that it itself is made up of other patterns, for example
the Observer pattern. It is used in PHYRE to separate presentation
logic from business logic and data. PHYRE actually features a varia-
tion of the MVC pattern. Since reusability of PHYRE’s classes is not a
primary goal, I decided to merge the controller into the view in order
to keep the architecture simple, for the sake of clarity, and to keep the
number of classes at a minimum. Microsoft uses an own name for this
variant of the MVC pattern, called the Document–View pattern [23].

43

10 UI Design: PHYRE’s Single-Screen Interface

The last section of this paper talks about PHYRE’s user interface.
Contrary to conventional web applications, RICH INTERNET APPLICA-

TIONS do not rely on page refreshes in order to display newly requested
data. This means, that an RIA can display all relevant information on a sin-
gle screen, hence single-screen interfaces, and is able to update certain parts
of it separately and only when requested.

I took advantage of this fact and designed PHYRE’s user interface after
the following two principles, which seem especially important to me:

I Display all relevant information at a glance.

II Let the user get to the information she or he needs as quickly as possible.

You can see the translation of the first principle in the following two
drafts of PHYRE’s user interface, which were designed for the purpose of
demonstration to the future users of the application:

Figure 8: Draft of a horizontal layout for PHYRE’s user interface

44

Figure 9: Draft of a vertical layout for PHYRE’s user interface

Even in those very early drafts, you can see that users can choose from
a list of experiments and then view the corresponding details on the same
screen, without having to undergo a complete page refresh.

To see the second principle applied in PHYRE, please refer to Figure 10
and 11, while you are reading the following description.

First, let us reproduce the steps that are necessary to get to an informa-
tion when we are browsing the experiments catalog with PHYRE (Figure 10):

1.) Select a category.

2.) Choose an experiment from the corresponding category.

3.) View the experiment’s information.

Now let us look at the same when we are searching the catalog (Fig-
ure 11):

1.) Enter a keyword and press search.

2.) Choose an experiment from the search results.

3.) View the experiment’s information.

45

1

2

3

Figure 10: Browsing PHYRE’s catalog

1

2
3

Figure 11: Searching PHYRE’s catalog

46

As seen in the previous two situations, where only three steps are nec-
essary to get to a certain information, and especially when using PHYRE in
real life, its user interface design turns out to be very accessible and intu-
itive. It enables the user to see all the relevant information at a glance and at
the same time, all the information can be accessed with a minimum amount
of steps necessary.

While using PHYRE, you should pay attention to the little details of its
user interface, like the possibility of resizing or even hiding the sidebar
placed on the left, which gives you more space for viewing the requested
information.

Designing good user interfaces means to put oneself in the position of
the users that will eventually use the application and to understand their
needs. With this in mind you can design user interfaces that enable users to
get their job done quicker and be more efficient without having to undergo
a long-lasting learning process.

47

11 Closing Thoughts

This paper has reached its end, but my journey as application developer
will definitely continue. Over the past six months, during which I exten-
sively dealt with the topics and issues surrounding the fascinating world
of RICH INTERNET APPLICATIONS, I learned more than I would have ever
thought before. A small part of my experiences is reflected in this paper, an
even bigger part in the architecture of PHYRE and the thousands of lines of
code of which it is made up, while the rest remains a truly personal experi-
ence.

Speaking of PHYRE, I can proudly say that I achieved all the goals I set
for myself personally, and at the same time, I accomplished to implement
nearly all the features that are found in the specifications.

As always, not everything works out as planned. For example, this was
the case with the file upload module for PHYRE. Due to Macromedia Flash
Player’s lack of support for file uploads and the non-existence of worthy
alternatives, except for a few hacks and workarounds, I unfortunately had
to abandon the idea of making file uploads possible directly in PHYRE itself.

Other features that I had in my mind, for example allowing users to
print the data sheets that are displayed in the application, were not imple-
mented due to the limited time I was given to finish my project.

The preceding setbacks do not actually bother me since the beautiful
thing about PHYRE is, that its well thought-out and open architecture al-
lows me to implement these features easily at any time later.

Since developing applications is not a scientific process, I cannot un-
cover the definite steps which are necessary to build a successful RICH

INTERNET APPLICATION. Nevertheless, at this point I will mention six
lessons learned from the time I spent working on my project:

Prepare Yourself
Before sitting in front of my computer and starting to work on the
project, I read a lot of books, articles, and relevant discussions in fo-
rums that are all related to the topic I chose. At the same time, I talked
to the involved people from the school and elaborated the specifica-
tions for the application.

The bottom line is, having come this far, I can say that this intensive
time of preparation definitely saves you a lot of time in the long term,
since you truly know where yours goals lie and what has to be done
in order to get there . . .

Plan Ahead
From the development’s point of view, I started out by modeling the
database upon which the catalog is based. On the entity-relationship
diagram, which comes with this paper, you can see that there are a

48

few tables represented which are not actually used in this first ver-
sion of PHYRE. Even so, I decided to include them, since they will
probably be used in a future version of PHYRE.

Always make sure your application’s architecture is open to exten-
sion, since there will always come a point where something has to be
added or changed. While spending time on thinking about the future
of your system, do not lose focus on the upcoming tasks . . .

Take One Step at a Time
After having defined PHYRE’s architecture and database model, I be-
gan building the shell of its user interface. During this process, I
added the first feature, namely displaying the different categories of
the catalog. This feature included an interaction of all three tiers. It
required the programming of the logic in the business tier which is re-
sponsible for fetching all categories from the database. On the other
hand, I had to develop a visual component whose task it was to dis-
play those requested categories in a hierarchical tree.

Each one of PHYRE’s components and modules was first built sepa-
rately in the form of a self-contained element and then integrated into
the main application. This approach improves the chance of finding
and eliminating bugs, as they appear isolated from the main applica-
tion.

By taking one step at a time, as described above, you will accomplish
your goals faster and more efficiently . . .

Be Courageous
When you realize that you could have done something in a better
way, have the courage to go back and to do it over again. I ensure
you that this will save you from a lot of trouble in the long run . . .

Test, Test, Test
Once you have implemented a particular module or component, you
should test it thoroughly, to make sure it behaves the way you planned
it, and that it does not break or interfere with other parts your system
. . .

Look Back and Learn
The very last and somehow most frustrating lesson I learned is, that
once you have finished your project, you look back and see so many
things you could have done so much better with the knowledge you
acquired during the time of its emergence.

Thinking about it, it is nice to know that the next project will bring
forward new challenges since you already have learned how to tackle
the old ones . . .

49

12 Acknowledgements

I would not have come this far, if it were not for certain people who sup-
ported me throughout the entire time during which I was working on this
project.

At this point, I would like to express my deepest gratitude to the fol-
lowing people: Mr. Byland, my tutor and physics teacher, the person who
gave me the idea for my PHYRE, for accompanying me the whole time and
for all his valuable advice. The Flash community, for sharing all its knowl-
edge. The authors of the books I read, for preparing me and making me
understand. Cindy, Greg, Ian, Eric & Owen Lamb, who allowed me to ex-
perience the incredible American way of life, for teaching me the American
language. The people who make me smile and feel good each and every
day. Heinz, my mentor, for believing in me. Janick, my best friend, who
introduced me to the fascinating world of computers, for inspiring me and
always listening to me patiently whenever I have a problem. Thomas, my
brother, who is the reason for the fact that this paper is not about something
completely else, for doing an excellent job of proofreading. My parents, to
whom I owe my existence, for the moral support during this intensive time.
To Julia, my girl, for loving me the way I am.

— Daniel Gąsienica
Uitikon Waldegg, Switzerland

March 2005

50

A Additional Resources

This page lists resources that were of great value before and during the time
I was working on this paper. These additional resources provide further
information to the topics discussed in this paper.

SQL & Databases

SQL Pocket Guide by Jonathan Gennick, ISBN: 0-596-00512-1

PHP & MySQL by Johann-Christian Hanke, ISBN: 87-91364-36-1

PHP professionell by W. J. Gilmore, ISBN: 3-89842-159-7

MySQL Table Joins by W. J. Gilmore,
http://www.devshed.com/c/a/MySQL/MySQL-Table-Joins

ActionScript & OOP

ActionScript for Flash MX by Colin Moock, ISBN: 0-596-00396-X

Essential ActionScript 2.0 by Colin Moock, ISBN: 0-596-00652-7

Design Patterns & Refactoring

Design Patterns by the Gang of Four, ISBN: 0-201-63361-2

Head First Design Patterns, O’Reilly, ISBN: 0-596-00712-4

Introducing Swing Architecture, Sun Microsystems
http://java.sun.com/products/jfc/tsc/articles/getting_
started/getting_started2.html

How to use Model-View-Controller (MVC) by Steve Burbeck, Ph.D.
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.
html

Refactoring by Martin Fowler, ISBN: 0-201-48567-2

Miscellaneous

MD5, Wikipedia
http://en.wikipedia.org/wiki/MD5

Benefits of Using the n-Tiered Approach for Web Applications, Macromedia
http://www.macromedia.com/devnet/mx/coldfusion/articles/
ntier.html

51

http://www.devshed.com/c/a/MySQL/MySQL-Table-Joins
http://java.sun.com/products/jfc/tsc/articles/getting_started/getting_started2.html
http://java.sun.com/products/jfc/tsc/articles/getting_started/getting_started2.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://en.wikipedia.org/wiki/MD5
http://www.macromedia.com/devnet/mx/coldfusion/articles/ntier.html
http://www.macromedia.com/devnet/mx/coldfusion/articles/ntier.html

B Tools

Flash Authoring IDE: Macromedia Flash MX 2004 Professional
http://www.macromedia.com/software/flash/

ActionScript Editor: SE|PY ActionScript Editor
http://www.sourceforge.net/projects/sepy/

PHP Editor: Macromedia Dreamweaver MX 2004
http://www.macromedia.com/software/dreamweaver/

Database Modeling Tool: DBDesigner 4
http://www.fabforce.net/

Server-Side Testing Environment: ApacheFriends XAMPP 1.4.6
http://www.apachefriends.org/

C Source Code

For a printed version of PHYRE’s source code please refer to the separate
booklet titled: PHYRE: THE SOURCE.

52

http://www.macromedia.com/software/flash/
http://www.sourceforge.net/projects/sepy/
http://www.macromedia.com/software/dreamweaver/
http://www.fabforce.net/
http://www.apachefriends.org/

References

[1] BBC (2003). Web’s inventor gets a knighthood. Accessed 15th October 2004.
http://news.bbc.co.uk/1/hi/technology/3357073.stm

[2] Macromedia (2002). Allaire, Jeremy. Macromedia Flash MX: A Next-
Generation Rich Client. Accessed 8th December 2004.
http://download.macromedia.com/pub/flash/
whitepapers/richclient.pdf

[3] Macromedia. Rich Internet Applications. Accessed 8th December 2004.
http://www.macromedia.com/resources/business/rich_
internet_apps/

[4] MINI USA. Car Configurator RIA. Accessed 8th December 2004.
http://www.miniusa.com/link/buildyourown/minicooper/

[5] E*TRADE. Stock Market RIA. Accessed 8th December 2004.
https://us.etrade.com/e/t/invest

[6] Microsoft (2000). Glossary. Accessed 15th October 2004.
http://www.microsoft.com/windows2000/en/server/iis/
default.asp?url=/windows2000/en/server/iis/htm/core/
iigloss.htm

[7] ECMA. Standard ECMA-262. Accessed 10th February 2005.
http://www.ecma-international.org/publications/
standards/Ecma-262.htm

[8] Macromedia (2004). Macromedia Flash Player: Version Penetration. Ac-
cessed 10th February 2005.
http://www.macromedia.com/software/player_census/
flashplayer/

[9] Macromedia (2004). The Maelstrom in Your Future. Accessed 15th
February 2005.
http://www.macromedia.com/devnet/logged_in/wanbar_
maelstrom.html

[10] Moock, Colin (2004). Nextgen Flash Player Demo in Tokyo. Accessed 15th
February 2005.
http://www.moock.org/blog/archives/000146.html

[11] Macromedia (2004). Connecting Macromedia Flash and PHP. Accessed
18th February 2005.
http://www.macromedia.com/devnet/mx/flash/articles/
amfphp.html

53

http://news.bbc.co.uk/1/hi/technology/3357073.stm
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://download.macromedia.com/pub/flash/whitepapers/richclient.pdf
http://www.macromedia.com/resources/business/rich_internet_apps/
http://www.macromedia.com/resources/business/rich_internet_apps/
http://www.miniusa.com/link/buildyourown/minicooper/
https://us.etrade.com/e/t/invest
http://www.microsoft.com/windows2000/en/server/iis/default.asp?url=/windows2000/en/server/iis/htm/core/iigloss.htm
http://www.microsoft.com/windows2000/en/server/iis/default.asp?url=/windows2000/en/server/iis/htm/core/iigloss.htm
http://www.microsoft.com/windows2000/en/server/iis/default.asp?url=/windows2000/en/server/iis/htm/core/iigloss.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.macromedia.com/software/player_census/flashplayer/
http://www.macromedia.com/software/player_census/flashplayer/
http://www.macromedia.com/devnet/logged_in/wanbar_maelstrom.html
http://www.macromedia.com/devnet/logged_in/wanbar_maelstrom.html
http://www.moock.org/blog/archives/000146.html
http://www.macromedia.com/devnet/mx/flash/articles/amfphp.html
http://www.macromedia.com/devnet/mx/flash/articles/amfphp.html

[12] MySQL. MySQL Product Page. Accessed October 2004.
http://www.mysql.com/products/

[13] About. Bug. Accessed October 2004.
http://pcsupport.about.com/cs/support101/g/bug.htm

[14] Moock, Colin (2004). Essential ActionScript 2.0. California: O’Reilly Me-
dia, Inc.

[15] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design
Patterns: Elements of reusable object-oriented software. Boston: Addison-
Wesley.

[16] Alexander, C., Ishikawa S., Silverstein, M., Jacobson, M., Fiksdahl-
King, I., and Angel, S. (1977). A Pattern Language. New York: Oxford
University Press.

[17] Cunningham & Cunningham, Inc. (2003). XP Refactoring FAQ. Ac-
cessed 17th February 2005.
http://c2.com/cgi/wiki?XpRefactoringFaq

[18] Wikipedia – The Free Encyclopedia. High-level programming language.
Accessed 10th January 2005.
http://en.wikipedia.org/wiki/High_level_language

[19] Fowler, Martin (1999). Refactoring – Improving the Design of Existing
Code. Boston: Addison-Wesley.

[20] Ullman, Larry (2003). MySQL Database Design. Accessed 15th Septem-
ber 2004.
http://www.peachpit.com/articles/article.asp?p=30885

[21] CNET Networks, Inc. (2005). TechRepublic – Accommodating a many-to-
many relationship in Access. Accessed 17th February 2005.
http://techrepublic.com.com/5102-6270-5285168.html

[22] IBM (2001). Rainsberger, J.B. Use your singletons wisely. Accessed 18th
February 2005.
http://www-106.ibm.com/developerworks/webservices/
library/co-single.html

[23] Microsoft (2005). Model-View-Controller. Accessed 18th February 2005.
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpatterns/html/desmvc.asp

54

http://www.mysql.com/products/
http://pcsupport.about.com/cs/support101/g/bug.htm
http://c2.com/cgi/wiki?XpRefactoringFaq
http://en.wikipedia.org/wiki/High_level_language
http://www.peachpit.com/articles/article.asp?p=30885
http://techrepublic.com.com/5102-6270-5285168.html
http://www-106.ibm.com/developerworks/webservices/library/co-single.html
http://www-106.ibm.com/developerworks/webservices/library/co-single.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/desmvc.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/desmvc.asp

	Introduction
	Who Should (and Shouldn't) Read This Paper
	The Evolution of Web Applications
	What Is a Rich Internet Application?
	Finding the Right Task for an RIA

	I Part One: Theoretical Background
	Phyre: Physics Rämibühl Experiments
	Features
	Specifications
	Functional Requirements
	Business Rules
	Technical Requirements
	User Requirements

	Technologies
	Introduction
	Macromedia Flash
	AMFPHP
	MySQL

	Programming Techniques
	Introduction
	OOP: Object--Oriented Programming
	Design Patterns
	Refactoring

	Three--Tiered Application Architecture
	Introduction
	Data Tier
	Business Tier
	Presentation Tier
	Benefits

	II Part Two: Building Phyre
	Phyre's Catalog Database
	The Entity-Relationship Model
	Relationships & Business Rules

	Hierarchical Data & Recursion
	User Authentication & Access Control
	Introduction
	Sensitive Data & MD5
	Implementation
	Prerequisites
	Login
	Logout

	Conclusions
	Code Listings

	Design Patterns in Phyre
	Singleton
	Proxy
	Further Patterns Found in Phyre

	UI Design: Phyre's Single-Screen Interface
	Closing Thoughts
	Acknowledgements
	Additional Resources
	Tools
	Source Code
	References

